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A one-pot synthesis of ferrocene-grafted dispiropyrrolidine/pyrrolizidine scaffolds has been accom-
plished in good yields through a facile 1,3-dipolar cycloaddition of various azomethine ylides derived
from diketones and secondary amino acids with Baylis–Hillman adduct derived from ferrocene carbalde-
hyde. The regiochemical and stereochemical outcomes of the cycloaddition reaction were ascertained by
X-ray crystallographic studies of one of the cycloadducts.

� 2009 Elsevier Ltd. All rights reserved.
Multicomponent reactions1 (MCRs) constitute an attractive syn-
thetic strategy in synthetic methodology, allowing the construc-
tion of complex molecular architectures, from easily available
starting materials in a single synthetic operation without the need
for isolation of intermediates.

Ferrocene derivatives containing heterocyclic systems have at-
tracted special attention in recent years,2–7 because of their organic
and inorganic properties as well as for their applications in various
areas of organic materials.8–11 Ferrocene is now currently em-
ployed in signaling probes for the detection of estrogen recep-
tors,12 dinucleotides,13 and DNA hybridization,14 thus opening
the way to gene sensors15 and has found extensive application in
drugs.16–18 In the light of current studies, the combination of ferro-
cene units with heterocyclic molecules offers a way to endow no-
vel functional molecules.19–21

The pyrrolidine moiety is one of the significant core structures
among the most extensively studied natural and unnatural hetero-
cyclic compounds with remarkable medicinal activities.22 In
particular, pyrrolidine and its fused derivatives such as pyrrolizi-
dines and indolizidines have played a unique role in the design
and synthesis of novel biologically active compounds, serving as
anti tuberculosis, anti bacterial, anti hypertensive, anti tumor,
and most notably anti malarial agents.23 Consequently integration
ll rights reserved.
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of a ferrocene moiety with pyrrolidine derivatives may increase
their biological activities or create new medicinal properties.

In recent years, the Baylis–Hillman reaction has become a pow-
erful and useful synthetic tool for the atom economical construc-
tion of a C–C bond, which has wide applications in various
organic transformations and is well documented in the literature.24

Recently there has been a report wherein ferrocenylphosphine was
used as a catalyst for B–H reaction.25 Here we utilize the B–H ad-
duct prepared from ferrocenyl aldehyde as a dipolarophile for the
synthesis of novel ferrocene-grafted heterocycles. The intermolec-
ular 1,3-dipolar cycloaddition reaction is one of the efficient meth-
ods for the construction of heterocyclic units in a highly
regioselective and stereoselective manner.26 In particular, the
chemistry of azomethine ylides has gained significance in recent
years as it serves as an expedient route for the construction of
nitrogen containing five-membered heterocycles, which constitute
the central skeleton of numerous natural products.27,28 In continu-
ation of our research interest in the area of 1,3-dipolar cycloaddi-
tions,29 we herein report for the first time a simple one-pot
three-component protocol for a facile transformation of the ferr-
ocenyl Baylis–Hillman adducts into mono/bicyclic heterocyclic
frameworks containing a pyrrolidine/pyrrolizidine moiety through
the reaction of the azomethine ylide generated from diketones and
various secondary aminoacids with ferrocene-based Baylis–Hill-
man adduct 3.

Methyl-2-(2,3-dihydro-2-hydroxy-1H-ferrocene-2-yl) acrylate
3, which was synthesized by the Baylis–Hillman reaction of ferro-



Fe

CHO O

OCH3
DABCO

Fe

OH

OCH3

O

1 2 3

Scheme 1. Synthesis of ferrocenyl Baylis–Hillman adduct.
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cenecarbaldehyde 1 and methyl acrylate 2 in the presence of
0.1 equiv of DABCO as a catalyst (Scheme 1), was utilized as a
dipolarophile for the first time. Schemes 2–4 depict the one-pot,
three-component reactions involving isatin 4, ninhydrin 7, ace-
naphthaquinone 9, sarcosine 5, proline 11, and ferrocenyl Baylis–
Hillman adduct 3 for the synthesis of novel ferrocenyl dispiropyrr-
olidines and pyrrolizidines 6,8,10,11,13–16.

The Baylis–Hillman adduct 3 underwent smooth reaction with
non-stabilized azomethine ylide generated from isatin 4 and sarco-
sine 5 in refluxing methanol, affording the ferrocenyl dispiropyr-
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Scheme 4. Mechanism for the sy
rolidine 6 in good yield (Scheme 2, Table 1, entry 1). The
formation of the cycloadduct 6 was confirmed by spectral and ele-
mental analyses. In the 1H NMR spectrum of 6, the –NCH3 proton
exhibited a singlet at d 1.96. The –NCH2 protons of the pyrrolidine
ring appeared as multiplets in the region d 2.43–2.58. The ferroce-
nyl protons exhibited singlets at d 4.06 and d 4.13. The aromatic
protons exhibited multiplets in the region d 6.91–7.19. The off-res-
onance proton decoupled 13C NMR spectra of 6 exhibited peaks for
the –NCH3 carbon and spirocarbons at d 35.41, d 71.77, and d 77.30.
The oxindole carbonyl group appeared at d 176.94. Furthermore,
the regiochemical and stereochemical outcomes of the cycloaddi-
tion reaction were unambiguously ascertained by single-crystal
X-ray analysis of the cycloadduct 6 (Fig. 1).30 As outlined in Table
1, a number of ferrocene-substituted cycloadducts were synthe-
sized in good to excellent yields. The structures and the stereo-
chemistry of the cycloadducts were confirmed by spectral
analysis.31,32

In another experiment, the reaction of azomethine ylide gener-
ated from ninhydrin 7 and sarcosine 5 with Baylis–Hillman adduct
3 in refluxing methanol yielded the cycloadduct 8 in good yield
(Scheme 3, Table 1, entry 2). In this experiment the cycloadduct
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Table 1
Three component synthesis of ferrocenyl dispiropyrrolidine/pyranopyrrolidine scaffolds involving intermolecular [3+2]-cycloaddition.

Entry Components Productsa Time (h) Yieldb (%)

A B C

1

Fe

OH O

OCH3

3

H
N COOH

5

N
H

O

O

4

Fe

OH

N
OCH3

OHN

O

6

12 83

2

Fe

OH O

OCH3

3

H
N COOH

5

OH

OH

O

O

7

Fe

O

N

OH

OH3CO
O

8

12 80

3
Fe

OH O

OCH3

3

H
N COOH

5

OO

9

Fe

OH

N
O

OCH3

10

O
14 63

4
Fe

OH O

OCH3

3

H
N COOH

5
12

N

N
O

Fe

OH

N
O

OCH3

N N

11

12 71

a Isolated products were characterized by 1H NMR, 13C NMR, mass, and X-ray diffraction analysis.
b Yields refers to pure isolated products after purification by silica gel column chromatography.
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initially formed underwent intramolecular cyclization because of
the proximity of the carbonyl group to give furanopyrrolidine 8
(Scheme 4). The structure of the compound was established by sin-
gle crystal X-ray diffraction analysis (Fig. 2).32

The three-component reaction was applied to the preparation
of the ferrocene-based spiropyrrolizidines 13–16 by reacting
ferrocenyl Baylis–Hillman adduct 3, proline 11, and diketones
4, 7, 9, and 12 (Table 2, entries 1–4). In all cases the cycloaddi-
tion reaction was extremely fast and could be conducted in
one-pot. The scope of the reaction sequence allows the prepara-
tion of diversely functionalized pyrrolizidine rings fused to a
ferrocene. As expected, the regiochemical and stereochemical
outcomes of the products were confirmed by spectral and
elemental analyses.
In summary, we have demonstrated that the MCR could be used
for synthesizing novel ferrocene-grafted dispiro pyrrolidine and
pyrrolizidine scaffolds through one-pot three-component intermo-
lecular [3+2] cycloaddition of azomethine ylides with unusual fer-
rocene-derived Baylis–Hillman adduct. A wide range of pyrrolidine
scaffolds can be prepared having a substitution pattern controlled
by the selection of the reactants. At present no multicomponent
reaction leading to pyrrolidine derivatives having ferrocene func-
tionality derived from Baylis–Hillman adduct of ferrocene carbal-
dehyde derivatives offers such a high level of functional,
structural, and stereochemical diversity. We are optimistic that
this highly flexible and robust methodology will provide quick
and easy access to complex molecular structures, which are of
therapeutic interest.



Table 2
Three component synthesis of ferrocenyl dispiropyrrozidine/pyranopyrrolizidine scaffolds involving intermolecular [3+2]-cycloaddition.

Entry Components Productsa Time (h) Yieldb (%)
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Figure 1. ORTEP diagram of compound 6.

Figure 2. ORTEP diagram of compound 8.
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Table 2 (continued)

Entry Components Productsa Time (h) Yieldb (%)

A B C
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a Isolated products were characterized by 1H NMR, 13C NMR, mass, and spectral analysis.
b Yields refers to pure isolated products after purification by silica gel column chromatography.
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